Virtual Motor Best Practices Seminar

Megger. Day 2: Insulation Assessment of Motors through VLF and PD Testing

Markus Söller

MD, Power Diagnostix Systems GmbH

Todays presenter

Markus Söller

- Managing Director of Power Diagnostix Systems
- Aachen, Germany
- Working for PDIX by Megger since 1997
- Active in national and international bodies

markus.soeller@megger.com

Power Diagnostix Systems

Power Diagnostix

Insulation Assessment of Motors through PD Testing

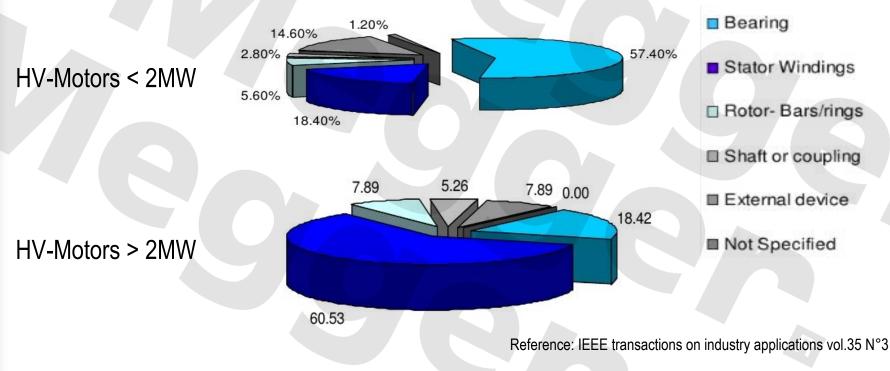
Virtual Motor Best Practice Seminar, 23.06.2020

PD Testing on Motors - Agenda

- Why PD testing on motors?
- Applicable Standards / Normative References
- PD Measurement Techniques
 - Offline Testing
 - PD Signal Properties
 - PD Calibration & Test Setups
 - Measurement Instruments
- Failure examples

Why PD Measurements on RMs?

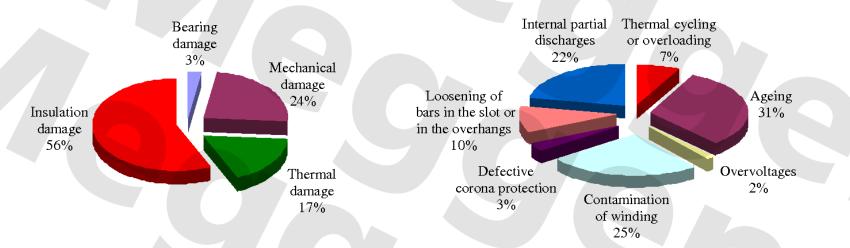
- Offline PD Measurements to assess the insulation health of Generators, Motors, or other RMs
- Changing PD Patterns and PD
 amplitudes indicate incipient failure
- PD Pattern Analysis assists with failure Investigations (Root Cause Analysis)
- Added value if PD Tests are combined with loss factor measurements and other dielectric tests



Why PD Measurements on RMs?

Power Diagnostix Systems

Failure Study : HV motors in the Petrochemical Industry ('99)



Why PD Measurements on RMs?

IEEE Electrical Insulation Magazine (Vol. 24, Issue 4, 2008)

Stator Winding Insulation Failure Statistics

Damages of hydrogenerators (left) and root causes of insulation damages (right)

Stator Winding Deterioration

- In case of "normal" gradual ageing, the assumed life cycle a stator is up to 20 years
- Manufacturing inefficiencies, poor design and improper processing can enhance the impact of the common operational TEAM-stresses (Thermal, Electrical, Ambient, Mechanical)
- Fast developing PD-behavior reduces life-time of the insulation system
- PD-fault mechanism developing on a critical position within the winding may cause severe problems in a couple of months, only
- PD Testing is an excellent tool to assess the condition of the insulation

PD Testing on Motors - Agenda

- Why PD testing on motors?
- Applicable Standards / Normative References
- PD Measurement Techniques
 - Offline Testing
 - PD Signal Properties
 - PD Calibration & Test Setups
 - Measurement Instruments
- Failure examples

- There are currently <u>no</u> standards defining <u>acceptance criteria</u> for Partial Discharge testing on rotating machinery
- The lack of such criteria often causes endless discussions between owner and manufacturer after submission of test reports, even during factory tests
- An important difference between rotating machines and other applications is property to be PD-resistant versus other PD-free insulation systems
- Frequently asked questions on this subject are:
 - How much PD is now too much PD?
 - Defining acceptance criteria for a PD-resistant insulation systems?

Normative References

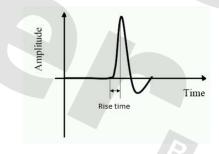
- Main "horizontal" standard, i.e. the IEC 60270
- Technical specifications and guides from IEC, IEEE, Cigré, EASA and EPRI
 - Test circuits and procedures
 - Voltage application sequences
 - Test durations
 - PD-detection bandwidths
 - Calibration circuits
 - Typical PD-phenomena

• IEC60034-27, IEEE 1434-2014, Cigré ref.258 and ref.558, etc.

PD Testing on Motors - Agenda

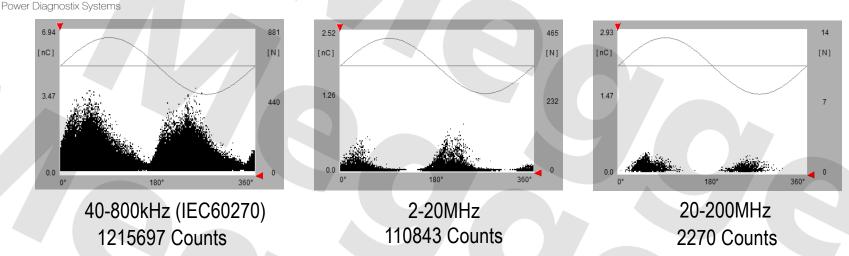
- Why PD testing on motors?
- Applicable Standards / Normative References
- PD Measurement Techniques
 - Offline Testing
 - PD Signal Properties
 - PD Calibration & Test Setups
 - Measurement Instruments
- Failure examples


Offline PD-test : Introduction


- Power Diagnostix Systems
 - The Motor or Generator is out of service, HV-supply cables or bus-bar system are disconnected and isolated
 - Stator windings should be energized using an external "PD-free" high voltage source
 - Measurement condition differ from normal operation
 - Cold conductor (no-load conditions)
 - Influence of environmental conditions (temperature, but mainly relative humidity)
 - Different electrical field distribution
 - Reference measurement during factory acceptance test (FAT) and in-depth verification by field testing over time
 - Usually combined with visual inspections, loss factor & capacitance measurement and DC-Megger tests
 - Excellent guidance for partial repairs

HFPD signal properties

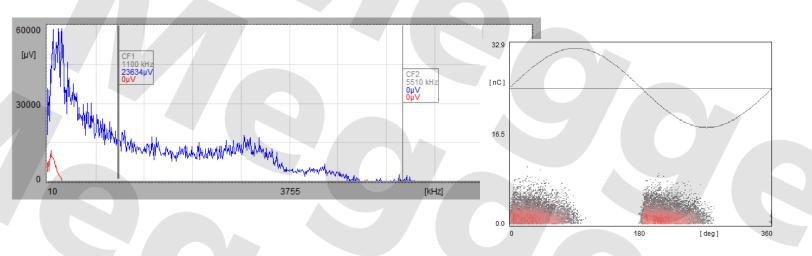
- Internal activities within main insulation generally start as a gas discharge
- The electron avalanche causes a local high frequency current displacement
- At the discharge location, the HF-current impulse has a short rise time
- Under nitrogen (N) conditions, the rise time is typically in range of 1ns, translating into a bandwidth up to 350MHz
- However, a stator winding is a non-ideal high frequency conductor



HFPD Impulse Properties

- The original PD-pulse properties will be affected by HF-effects such as attenuation, reflections, resonances, dispersion and radiation
- Basic understanding of the pulse propagation and bandwidth selection are essential for the measurement and the analysis
- The lower bandwidths are more prone to HF-noise, but offer the better coverage to detect PD in the entire winding
- Recommended detection bandwidth for offline testing: <1MHz (IEC60270)

PRPD vs. Detection Bandwidth

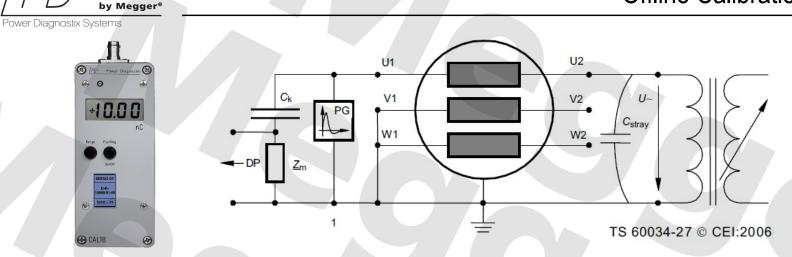


- 1200kW 6600V asynchronous motor with internal neutral connection
- New VPI impregnated stator winding
- Offline PD-measurement 60s PD-pattern acquisition (coupling capacitor)
- Same test object and test voltage different band pass filters

Example of an offline signal spectrum

Power Diagnostix Systems

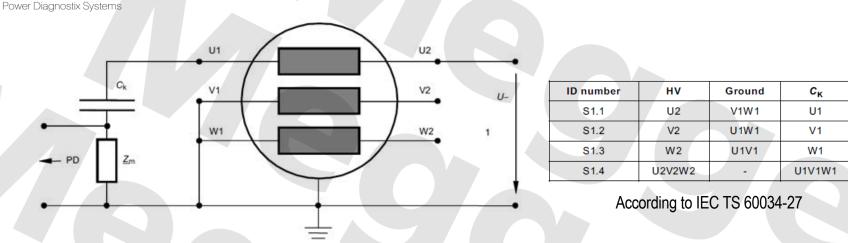
- 800kW 6000V asynchronous motor with internal neutral connection
- Internal PD-activity in the main insulation (Ground Wall)
- Offline PD-measurement (conventional circuit acc. IEC60270)
- Available signal up to 5,5 MHz



- PD measurements are relative measurements and require a calibration (IEC60270)
- Compensation of the test circuit's overall attenuation
- Injection of a calibration pulse with defined magnitude & magnitude adjustment of the signal response
- Strictly following the IEC60270, a calibration is valid only when using a bandpass filter

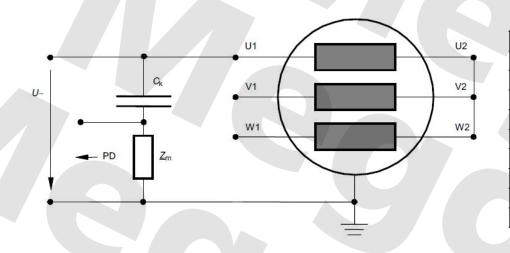
 $30kHz \le f1 \le 100kHz$ $f2 \le 1MHz$ $100kHz \le \Delta f \le 900kHz$

• However, PDIX instruments support the principle of the so called quasi integration at higher frequencies as well



- Typical calibration levels for rotating machines (in IEC range /off-line): 500pC-10nC
 - Depending from winding to winding (slot length capacitance)
 - Signal-to-noise ratio (SNR)
- Valid for the test setup in final arrangement, at a specific detection bandwidth and calibration magnitude

Recommended Off-line PD-Test Circuits (1/2)



 Motor or Generator windings with accessible neutral connection allow energizing of complete winding to ground and the individual phases to ground

Power Diagnostix Systems

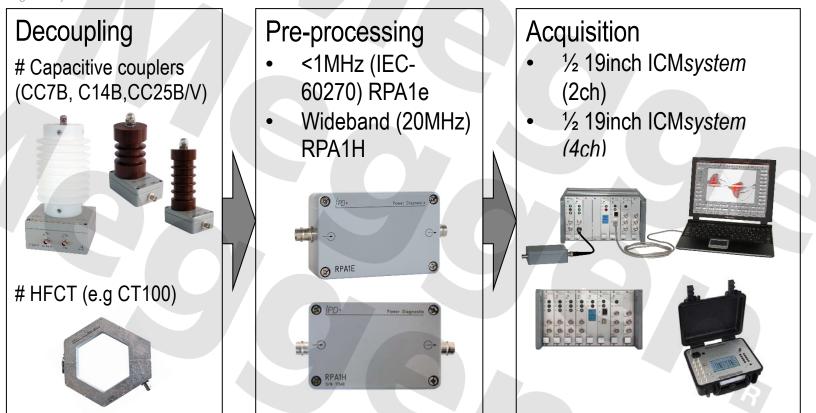
Recommended Off-line Test Circuits (2/2)

	ID number	HV	Ground	Cκ					
		Accessible s	star point						
	E2.1	U2V2W2	-	U1					
	E2.2	U2V2W2	-	V1					
	E2.3	U2V2W2	- /	W1					
	E2.4	U1V1W1	-	U2V2W2					
Inaccessible star point									
	E2.5	V1	_ -	U1					
	E2.6	W1	-	V1					
	E2.7	U1	-	W1					

According to IEC TS 60034-27

• Stator windings with internal star point (neutral) connection allow energization of the complete winding, only (phase-to-ground)

PD Testing on Motors - Agenda

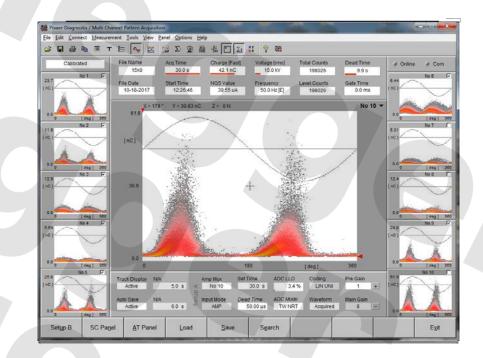

- Why PD testing on motors?
- Applicable Standards / Normative References
- PD Measurement Techniques
 - Offline Testing
 - PD Signal Properties
 - PD Calibration & Test Setups
 - Measurement Instruments
- Failure examples

ICMsystem : configuration for rotating machines

Power Diagnostix Systems

ICMsystem (Generation 5)

- Advanced PD-detection system and analysis tool
- Simultaneous real time acquisition on up to 10ch (typ. 4 ch. with RM testing)
- Integrated spectrum analysis up to 10MHz (BW: 9kHz/300kHz)
- Time domain analysis using the built-in 100MS DSO
- Measurements with AC and DC voltages
- Advanced (SC/MC) control software
- High Resolution PRPD-Pattern (16-bit)
- Powerful Suppression Tools
- Input sensitivity <0,02pC
- IEC 60270 compliant
- Field and factory environment



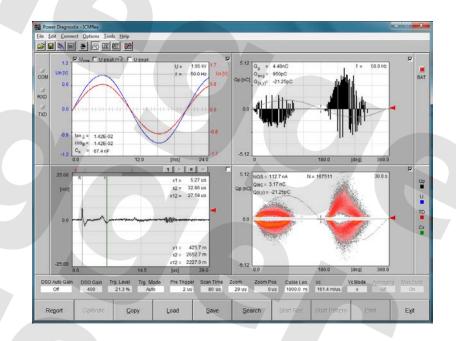
ICMsystem : software

Misc. Panels and Visualizations

- Single Channel Acquisition (SC)
- Multi channel Panel (MC)
- Spectrum Analysis
- Trending Functionality
- 16-bit PD-pattern
- Statistic Analysis Panel
- Time Domain (DSO)

ICMsystem: Setup Impressions

Power Diagnostix Systems


ICM*flex*

- Measurement System for Partial Discharge (PD), Dielectric Loss Factor (Tan δ) and capacitance
- Unique design with Acquisition box on HV-potential
- Power frequency synchronization (20-510Hz) & VLF
- Plug and play setup incl. high voltage line filter
- User friendly control software with reporting functionality
- Optional step-by-step guide
- Bluetooth or Fiber optic communication
- Battery operated (up to 12h)
- IEC 60270 compliant
- Ultimately suited for Routine field and factory testing

ICMflex - Software

- All-in-one operation panel
- Direct access to all relevant instrument settings
- Multiple graphs updated simultaneously
- Data recording vs. time and vs. voltage
- Test automation
- Export data format .xls, .xlsx, .html

100.0

Qp [nC]

50.0

0.00

0.0

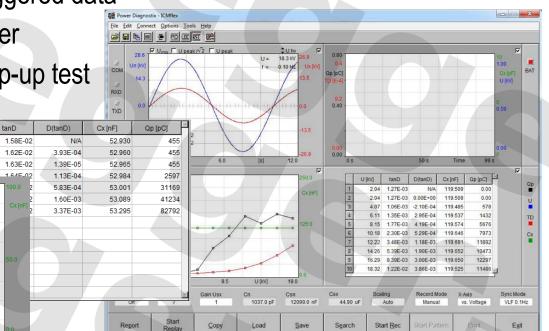
d 20.0

ICM*flex* – Software

PD & TD Recording

- Trending graphs of triggered data
- Auto and manual trigger
- Guided power factor tip-up test acc. IEEE286

2


U [kV]

1.29

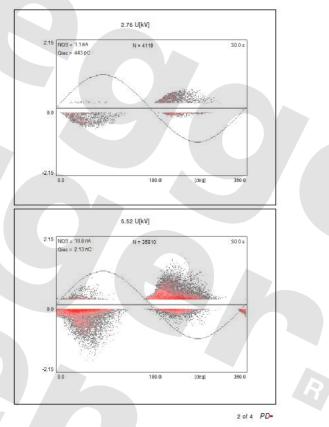
2.47

2.47

2.67

ICMflex – Step by Step Guide

- Implemented into the ICM*flex* standard software
- Simplifies measurements
- Guided steps prior and during measurements
- Customized reporting tool


	ous Step by Step Guid al Settings	le Multi Channel Options	5
Volta	ge Cycles to Stabilize		5 cycles
C) 👹	Cable Measurement Report		×
Ac	Location	Cable Type	No. of Phases
R	Measurement Point	Manufacturer	Name of Phase 1
R	From Point	Year of Production 2000	Name of Phase 2
Vo	To Point	Dimensions	Name of Phase 3
T	Cable No./ID	Nominal Voltage	Reserve 1
SV	Utility	Insulator	Reserve 2
Se	Date 04-10-2013	Conductor	Type of Calibrator
	Time	Screen	Calibration Charge
SI	10:08:28 Testing Person	Time in use	Calibration File (*.dso; *.cfl)
-Rep	Data Directory		
Str	c:1		
	Comment		
	Print Localisation Graph 🔽	Print Stripchart	Print Table
	Print DSO Graph 🔽	Print PD Scope	

Power Diagnostix Systems

	Tanδl	oss fact	or and PD	neasurem	nent	
Work No.	12BP1005		Serial	No. 12BF	21005	
Machine Type	G16m-10		Phase	(s) V		
Measured by	Goedertier/Milche	r)	Appro	ved by Goed	lertier	
Nominal Voltage	13.	8				
wax Voltage	1.0	•U_n				
Device	ICMflex Ser No. 74 - FW Version 1.28					
	U [kV]	Tan8/%	Δ (Tans) /% $_{\rm p}$	Cx [nF]	Qiec [nC]	
	2.76 5.52	1.254	7.477	146.876 148.514	0.480	
	8.28	2.001		140.514	10.1	
	11.04	3.273		152.452	22.5	
	13.80	3.839	5.665	154.283	35.7	
tan 8 [%]	tan δ= f(Max. ⊥tan 87 U)	% 7.477	PD = f(U)	C	iec on
tan 8 [%] 4.00			%•• 7.477	PD = f(U)	0	iec 36.00
			% 7.477	PD = f(U)		
4.00			% 7.477	PD = 1(U)		36.00
3.00			% 7.477	PD = f(U)	C	36.00 27.00

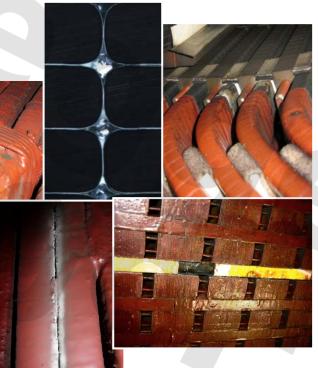
ICM*flex* – Step by Step Guide Report

© Power Diagnostix Systems GmbH, Vaalser Strasse 250, 0207, 7, 00000, 000000, 000000, 0000000

Power Diagnostix Systems

ICMflex – How to connect

PD Testing on Motors - Agenda


- Why PD testing on motors?
- Applicable Standards / Normative References
- PD Measurement Techniques
 - Offline Testing
 - PD Signal Properties
 - PD Calibration & Test Setups
 - Measurement Instruments
- Failure examples

Classification of Rotating Machine PD

Power Diagnostix Systems

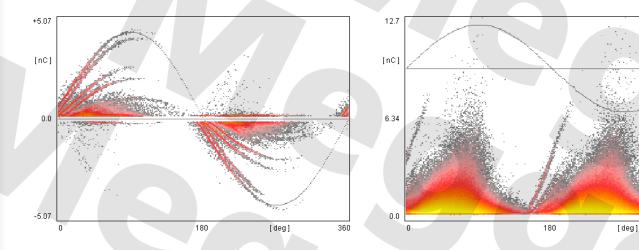
- Internal Discharge Activities
 - Delamination's (main insulation or conductor bound)
 - Micro Voids
 - Thermal ageing
- End Winding (overhang) Discharges
 - Surface Discharges by contamination
 - Bar-to-Bar activity
 - Vibrations
- Slot Discharges
 - Wedge problems
 - Inadequate impregnation
- Slot-exit Discharges (Field grading problems)
- External high frequency disturbances

Power Diagnostix Systems

Defect Locations in the Stator Bar

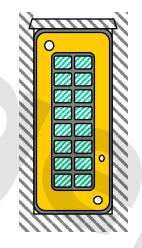
2 1

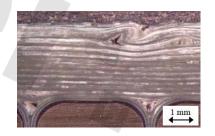
- A: Strongest electrical Field
- B: Delamination of the Main Insulation from the Winding
- C: Tape Layer Delamination
- **D:** Treeing in Layers
- E: Ground Wall Delamination, so-called Slot Discharge
- F: Internal Voids


Mainwall insulation: mica tape & resin
 Conductor insulation
 Stress-grading protection
 Slot corona protection
 Finishing or sealing tape
 Bracing materials
 Slot-wedging materials

© ABB (white paper)

Void Discharges

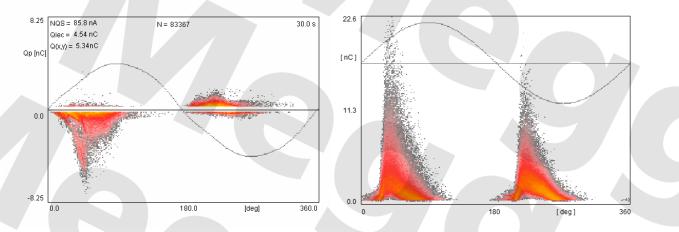

Power Diagnostix Systems

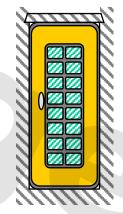


Symmetrical Electrode Configuration

- Multiple Voids of different Sizes
- Increased Test Voltage
- Voltage shaped clusters (line type pattern)
- Void and Surface Discharge

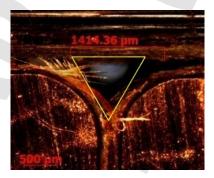
© Power Diagnostix Systems GmbH, Vaalser Strasse 250, 52074 Aachen, Germany, www.pdix.com




360

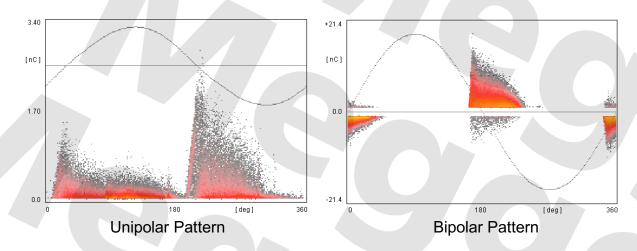
Conductor-bound delamination

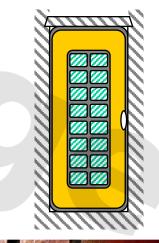
Power Diagnostix Systems



Main Pattern Properties:

- Asymmetrical pulse distribution for both cycles
- Dominant positive cycle
- Delamination at inner conductor circuit
- Normal Ageing : frequent load cycling (e.g. pump storage stations)

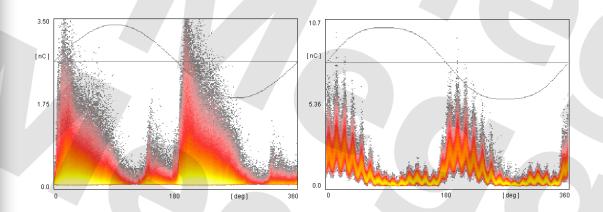


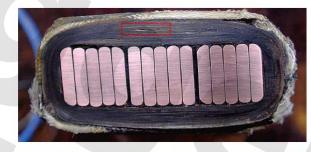


Slot Discharges with Machine Bars

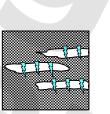
Power Diagnostix Systems

Asymmetrical Electrode Configuration


- Predominantly in the negative Half Cycle
- Often typical triangular Pattern
- Strongly Load Dependent due to Magnetic Forces
- Delamination at the slot corona prevention layer
- Consequent high Ozone (O3) generation causing "collateral damage"

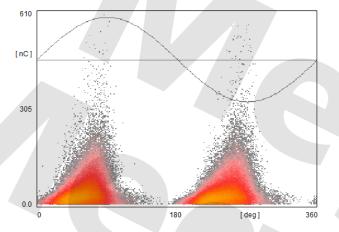


Discharges of thermally aged main Insulation


Power Diagnostix Systems

Symmetrical Electrode Configuration

- Similar Pattern for both Half Cycles
- Equal Polarities and Amplitudes
- Often typical triangular Pattern
- Cross-coupling of adjacent Phase
- Main Insulation Delaminations/Voids

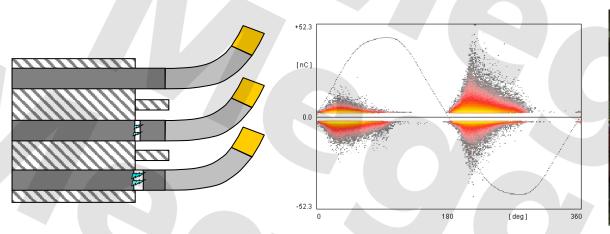


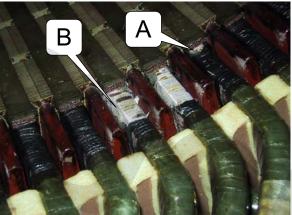
© IEEE Magazine, Vol. 24, Issue 4, 2008

End Winding Surface Discharges

Power Diagnostix Systems

Contaminated Overhang

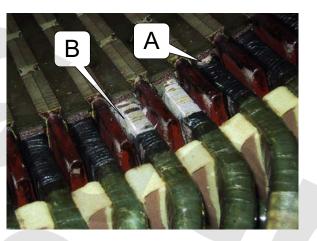

- Similar, often triangular, PD Pattern for both half cycles (90° / 270°)
- Strongly voltage dependent discharge magnitude
- Contaminated or Moisty Insulation Surface
- Insufficient Spacing between inter phases
- Insufficient Grading by the Semi-Conductive layer



Power Diagnostix Systems


Slot-Exit PD-activity: Initially

Defect Mechanism with Vacuum Impregnation Systems


- Thermal Stress causes Surface Cracks
- Initial State: Surface Discharge
- Discharge Level: 10-50nC
- Gap Grows due to the PD "consumes" insulation

Power Diagnostix Systems

Defect Mechanism with global Vacuum Impregnation

- Loss of dielectrical strength to Ground Potential
- Discharge to the Pressure Finger, Plate or stator core
- Final Stage: Floating Potential Discharge
- Strong Discharge Amplitude Qp > 100nC

Slot-Exit PD-activity: Final Stage

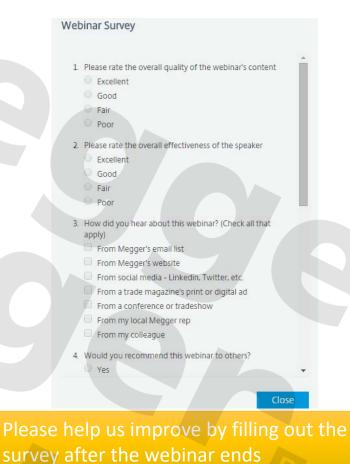
Summary

- Stator winding insulation system are PD-resistant and widely tolerate PD-activity for several years of operation without being the root-cause of failure
- Dielectric measurements are as important as monitoring of vibrations
- Partial detection on rotating machinery is a matter of trending and comparing actual results with available reference data there are currently no acceptance criteria defined
- Sufficient care must be taken with the bandwidth selection, calibration procedure and correct selection of recommended measurement circuits
- Analysis of the phase resolved partial discharge pattern (PRPD) provides essential information about the ongoing type of partial discharge and the concerned location
- Off-line measurements serve as an in-depth verification after manufacturing, during the first months of operation and during major maintenance outages. Moreover, they are an excellent tool to be used for partial repairs

PD Testing of Rotating Machines

Power Diagnostix Systems

Insulation Failures are costly and can be disastrous...


Thank You for Your Attention!

Survey and Contact Information

Contact Information

Presenter Markus Söller <u>markus.soeller@megger.com</u>

- USA and Mexico Sales
 - -USAsales@megger.com
 - +1 800 723 2861
- Canada Sales
 - -<u>CAsales@megger.com</u>
 - +1 800 297 9688

Megger.

Megger.

Question

Questions ???

9

٩.